

For the Reaction:

Estimate the enthalpy of reaction, using the bond energy values.

Bond Energies per mole of bonds is always positive.
(defined as endothermic energy to break bond)

H-H	432 kJ
H-O	467 kJ
O=O	495 kJ

Reactants Bonds Broken		Products Bonds Formed	
H-H 432 kJ		H-O-H	-467 kJ
H-H 432 kJ		H-O-H	-467 kJ
O=O 495 kJ		H-O-H	-467 kJ
Total 1359 kJ		Total	-1868 kJ
Estimated Net Change in Enthalpy			
$\Delta H_{rxn} = -509 \text{ kJ / mol}_{rxn}$ (meaning 2 mol $\text{H}_2\text{O}(\text{g})$)			

Alternately this equation will work also since it will assign the negative sign to the products.

$$\Delta H_{rxn} = \Sigma \text{ Bond energy reactants} - \Sigma \text{ Bond energy products}$$

$$\Delta H_{rxn} = (432 \text{ kJ} \times 2 + 495 \text{ kJ}) - (467 \text{ kJ} \times 4)$$

$$\Delta H_{rxn} = -509 \text{ kJ for the reaction } 2\text{H}_2(\text{g}) + \text{O}_2(\text{g}) \rightarrow 2\text{H}_2\text{O}(\text{g})$$

Bond energies are estimated, and this will be an approximate value.